IUT ADMISSION TEST 2016-2017

QUESTION PAPER

PHYSICS

1.	A truck is stopped at a traff a car passes the truck going	15 m.s ⁻¹ . Where does the true	as green, it accelerates at 2 ck catch up with the car?	.5 m.s ⁻² . At the same instant,
	A) 220 m	B) 180 m	C) 165 m	D) 195 m
2.	An airplane flies due west northeast relative to the gro	at 185 km.h ⁻¹ with respect t und. What is the plane's spee	o the air. There is a wind ad with respect to the groun	blowing at 85 km.h ⁻¹ to the d?
	A) 139 kmh ⁻¹	B) 230 kmh ⁻¹	C) 239 kmh ⁻¹	D) 179 kmh ⁻¹
3.	A tennis ball is thrown stra ground. How high does the	ight up with an initial speed of ball rise?	of 22.5 m.s ⁻¹ . It is caught at	the same distance above the
	A) 24.72 m	B) 23.57 m	C) 25.83 m	D) 26.53 m
4.	Engineers are developing a bullets. One such gun can what time interval does the	new types of guns that migh give a small object a velocit acceleration take place?	t someday be used to laun ty of 3.5 km.s ⁻¹ , moving it	ch satellites as if they were through only 2.0 cm. Over
	A) 11.43 μs	B) 13.43 μs	C) 10.43 µs	D) 12.43 μs
5.	On a planet with an unknoplanet?	own value of g , the period of	f a 0.65 m long pendulum	is 2.8 s. What is g for this
	A) 2.27 ms ⁻²	B) 2.95 ms ⁻²	C) 3.95 ms ⁻²	D) 3.27 ms ⁻²
6.	A student stands on a bath N. As the elevator moves a acceleration of the elevator	room scale in an elevator at r up, the scale reading increase ?	rest on the 64 th floor of a b is to 936 N, then decreases	uilding. The scale reads 836 back to 836 N. What is the
	A) 1.17 ms ⁻²	B) 1.27 ms ⁻²	C) 1.21 ms ⁻²	D) 1.57 ms ⁻²
7.	As a baseball is being cau, baseball is 0.145 kg. What	ght, its speed goes from 30.0 is the magnitude of the force a	0 m.s^{-1} to 0.0 m.s ⁻¹ in abou acting on the player who ca	t 0.0050 s. The mass of the ught it?
	A) 890 N	B) 870 N	C) 780 N	D) 980 N
8.	A player kicks a football fr the range of ball (assume no	om ground level with an initiaged	al velocity of 27.0 m.s ⁻¹ , 30	° above the horizontal. Find
	A) 63.42 m	B) 62.42 m	C) 61.42 m	D) 64.42 m
9.	A 5.00 g bullet is fired with frictionless surface. What is	a velocity of 100.0 m.s ⁻¹ tow the change in momentum of	ard a 10.00 kg stationary so the bullet if it is embedded	olid block resting on a in the block?
	A) - 0.45 kg.m.s ⁻¹	B) -0.55 kg.m.s ⁻¹	C) - 0.50 kg.m.s ⁻¹	D) $-0.65 \text{ kg.m.s}^{-1}$

10.	A 750 kg car moving which absorbs the energy $450 \text{ J.}(\text{kg °C})^{-1}$.	at 23 m.s ⁻¹ brakes to a x . What is the increase in	stop. The brakes cont temperature of the brake	ain about 15 kg of iron, es? Specific heat of iron is
	A) 29.40 °C	B) 39.40 °C	C) 49.40 °C	D) 19.40 °C
11.	An electric motor develops the motor exert?	65 kW of power as it lifts a l	oaded elevator to 17.5 m i	n 35 s. How much force does
	A) 1.75×10^5 N	B) 1.30×10^5 N	C) 1.45×10^5 N	D) 1.95×10^5 N
12.	The Earth is revolving arc 3.156×10^7 s, what is the ma	bund the Sun on an orbit of a solution of the Sun? ($G=6.67 \times 10^{-1}$	f radius 1.5×10 ⁸ km . If th ¹ Nm ² kg ⁻²).	he time of one revolution is
	A) 3.0×10^{30} kg	B) 1.5×10^{30} kg	C) 2.0×10^{30} kg	D) 2.5×10^{30} kg
13.	The intensity level of sound the same location, what is the	l produced by one lathe mach he intensity level of the sound	hine is 90.0 dB. If two suc d produced by the machine	ch machines start operating at es?
	A) 95.0 dB	B) 93.0 dB	C) 96.0 dB	D) 99.0 dB
14.	A man whose weight is 0.8 is lying down. The length (Young's modulus of the th	0 kN is standing upright. Ho of his thighbone when lying ighbone $Y=9.4\times10^9$ Pa).	w much his thighbone sho is 43.0 cm and the area	ortened compared to when he of the thighbone is 8.0 cm^2 .
	A) 2.29×10^{-3} cm	B) 3.29×10^{-3} cm	C) 1.29×10^{-3} cm	D) 4.57×10^{-3} cm
15.	The equation of motion of p the velocity of the particle a	particle experiencing simple to $t = 0.1$ s?	harmonic motion is $x = 10$	$0\sin(10t - \pi/6)$ m. What is
	A) 88.17 ms ⁻¹	B) 78.57 ms ⁻¹	C) 98.87 ms ⁻¹	D) 88.87 ms ⁻¹
16.	Two sources are producing difference in wavelength co medium?	g sound in a medium with prresponding to those two free	frequencies 480 Hz and equencies is 2 m. What is	360 Hz, respectively. The the velocity of sound in that
	A) 2880 ms ⁻¹	B) 2980 ms ⁻¹	C) 2860 ms ⁻¹	D) 2580 ms ⁻¹
17.	A bubble rises from the bott at the surface is 18 °C. If the A) 2.35 mm	tom of a lake of depth 80.0 m e bubble's initial diameter is 1 B) 2.10 mm	h where the temperature is 1.0 mm, what is diameter v C) 2.50 mm	4 °C. The water temperature when it reaches the surface? D) 2.40 mm
18.	An astronaut wears a new	watch when in a journey	at a speed of 2×10^8 m s	-1 with respect to the earth
	According to the mission co A) 8.34 h	ntrol the trip lasts 12.0 h. Ho B) 8.15 h	w long is the trip as measu C) 8.94 h	ured on the watch? D) 8.39 h
19.	A flash light is powered by the batteries with the lamp normal operating temperature	two 1.5 V batteries in series has a total resistance of 0.4 s	with internal resistance of Ω and the lamp filament here have the lamp?	0.1 Ω . The wire connecting has a resistance of 9.70 Ω at
	A) 815 mW	B) 823 mW	C) 875 mW	D) 865 mW

20.	A small fish is at a depth viewed by a kingfisher nea	of 2.0 or the s	m below the surface of surface of the pond?	ofas	still pond. What is the	appa	rent depth of the fish as
	A) 1.75 m	B)	1.45 m	C)) 1.50 m	D	1.65 m
21.	A wild rose 1.2 cm in dia magnitude of 150.0 mm. W is formed?	ameter /hat is	r is 90.0 cm from a c the distance between	amer the le	a's zoom lens. The for eas and the camera film	ocal 1 n whe	ength of the lens has a ere the image of the rose
	A) 17.5 cm	B)	18.0 cm	C)	19.5 cm	D)	18.5 cm
22.	The half life of ¹³ N is 9.96 present 40.6 min later?	5 min	. If a sample contains	3.20	$\times 10^{12}$ ¹³ N atoms at t =	0, h	ow many ¹³ N nuclei are
	A) 2.65×10 ¹¹	B)	2.55×10 ¹¹	C)	2.00×10 ¹¹	D)	2.35×10 ¹¹
23.	A door bell has a transform the secondary of the transfor A) 1350	ner to ormer, B)	deliver 8.5 V to it who how many turns does 1222	en co the pr C)	nnected to a 220 V m rimary have? 1322	ains. D)	If there are 50 turns on 1250
24.	An ideal transformer has 50 the primary is 100 W, what A) 95 W	00 turn is the B)	ns in the primary and 2 average output power 87 W	250 tu ? C)	urns in the secondary. 1 59 W	If the D)	average power input to 100 W
25.	The nichrome heating elem resistance of the element at $0.4 \times 10^{-3} \text{ °C}^{-1}$).	ent of t room	a toaster has a resistant temperature (27 °C)?	nce o (Te	f 12.0 Ω when it is re- emperature coefficient	d hot of re	(1200 °C). What is the sistance of nichrome is
	A) 8.10/12	В)	10.167 Ω	C)	9.167 Ω	D)	7.167 Ω
26.	A proton enters in a magnet proton?	ic fiel	d of 6.0 μ T with a velo	ocity o	of 6.0×10^7 m.s ⁻¹ . What	is th	e magnetic force on the
	A) 5.76×10 ⁻¹⁷	B)	5.76×10 ⁻¹⁸	C)	4.76×10 ⁻¹⁷	D)	3.76×10 ⁻¹⁷
27.	A 125 m long power line location is 0.52 mT directed	is hou down	rizontal and carries a ward. What is magneti	curre ic for	ent of 2500 A. The eace on the line?	arth's	magnetic field at that
	A) 108.5 N	В)	162.5 N	C)	160.5 N	D)	167.5 N
28.	Three resistances, $R_A=10 \Omega$ power is consumed by R_B ?	, R _B =	20 Ω and R _c =30 Ω are	e con	nected in series across	s a 60	V source. How much
	A) 25 W	B)	30 W	C)	20 W	D)	22 W
29.	How high does a mercury ba	arome	ter stand on a day when	1 atm	ospheric pressure is 98	3.6 kF	Pa?
	A) 740 mm	B)	760 mm	C)	755 mm	D)	725 mm
30.	An old wooden tool is found tool? (Half life of carbon is f	1 to co	$\frac{14}{4}$ ontain only 6.0 % of $\frac{14}{4}$	C tha	t a sample of fresh wo	od co	ontains. How old is the
	A) 2.3×10^3	B)	2.3×10 ⁴	C)	2.75×10 ⁴	D)	3.25×10 ⁴

31.	A power station con	ntains a heat e	ngine opera	ting between tw	o heat reservo	irs, one conta	ining steam	at 100 °C
	and other containin	g water at 20 °	C. What is	the maximum an	mount of electr	rical energy w	hich can be	generated
	for each Joule of the	e heat extracte	d from the s	team?				
	A) 0.263 J	B)	0.235 J	C)	0.214 J	D)	0.278 J	

32. Two parallel circular plates of radius 0.08 m are placed in air. The distance between the plates is 0.002 m and are kept at a potential difference of 100 V. What is electrical energy stored in the system?
A) 493 μJ
B) 437 μJ
C) 475 μJ
D) 445 μJ

33. A heater of resistance 110 Ω is immersed in a bucket containing 5 liter of water at 0°C. What is the temperature of water if the heater is kept on for 20 min using a 220 V mains? (Specific heat of water is 4.2 J.g °C⁻¹).
A) 26°C B) 25°C C) 27°C D) 29°C

34. The emitter and base current of a common emitter transistor circuit are respectively, 0.85 mA and 0.05 mA. What is β of the transistor?
A) 16
B) 18
C) 20
D) 10

35. A centrifuge in a medical laboratory rotates at an angular speed of 3,600 rpm. When the switch is off it rotates through 50 revolutions before coming to rest. What is the acceleration of the centrifuge.
A) 235 rad.s⁻²
B) 226 rad.s⁻²
C) 247 rad.s⁻²
D) 210 rad.s⁻²

CHEMISTRY

36.Solubility product of $Al(OH)_3$ is 3.7×10^{-15} . What will be the solubility of $Al(OH)_3$ in g/L unit?A) 8.424×10^{-3} B) 8.424×10^{-2} C) 7.424×10^{-3} D) 7.424×10^{-2}

37. Find the value of X_4 from the following nuclear reaction.

38. Which one of the following properties is not the general property of d-block element?

- A) All the d-block elements are heavy metals.
- B) d-block metals have high melting point and high boiling point.
- C) The ionization energy of d-block element is higher than that of s-block element.
- D) d-block metals are more electropositive than s-block metals.
- 39. If 4.25 mol H_2 and 4.75 mol I_2 is kept at a 1 L flask and heated to 300 °K then 6.7 mol HI is produced. Find the equilibrium constant K_c and K_p .

A) 3.563, 3.563 B) 35.63, 35.63 C) 35.63, 876.5 D) 3.563, 87.65

								SET A
40.	Wh	hat ratio of $\frac{[NH_3]}{[NH_4^+]}$ is requi	red fo	or a buffer solution that	has p	$pH = 7.0? K_a$ value of	NH_4^+	ion = 5.6×10^{-10} .
	A)	5.6×10^{-3}	B)	6.5×10^{-3}	C)	177.83	D)	17.783
41.	Du	ring the manufacturing p	oroces	s of a Sulphuric acid,	45202	acts as a		
	A)	Catalyst poison	B)	Positive catalyst	C)	Catalyst promoter	D)	Negative catalyst
42.	Acc	cording to Acid's strengt	h, wł	nich one of the followir	ng stat	tement is not true?		
	A)	$HCL > H_2SO_3 > HNC$	D_2		B)	$H_{3}PO_{3} > H_{3}PO_{4} >$	нсо	$_{2}H$
	C)	$HF > HNO_2 > CH_3C$	0 ₂ H		D)	$H_3PO_3 > HNO_2 > .$	нсо	2 ₂ H
43.	If a	cid rain happens at IUT,	what	will you use to make t	he soi	il normal?		
	A)	TSP	B)	$(NH_4)_2CO_3$	C)	Dolomite	D)	KNO ₃
44.	Wh	ich of the following ligh	ts has	the highest wavelengt	h rang	ge?		
	A)	Indigo	B)	Green	C)	Blue	D)	Orange
45.	Wh	ich of the following salts	s is sc	luble in water?				
	A)	CaSO ₄	B)	ZnSO ₄	C)	CaCO ₃	D)	ZnCO ₃
46.	Whi	ich one of the following	group	os is not true in the case	e of el	ectro negativity order	?	
	A)	F > Cl > Br > I			B)	Br > Te > Sb > Sn		
	C)	Ga > Pb > In > Cd			D)	0 > N > C > B		
47.	At 2 mol	$2.7^{\circ}C$ temperature 1 mole ecules are there in 2 mole	ecule s of t	of a gas has an average hat gas?	kinet	tic energy of 5.621 \times	10-14	⁴ erg. How many
	A)	2.65×10^{23}	B)	5.31×10^{23}	C)	2.41×10^{23}	D)	4.82×10^{23}
48.	Foll	owing equation is a part 0.00°	of pr	eparing				
	2CH	$IClF_2 \longrightarrow CF_2$	$_{2} = C$	$F_2 + 2HCl$				
	A)	Polythene	B)	Teflon	C)	Ploystyrene	D)	PVC
49.	Whi	ch one of the followings	is no	t a way to increase Oct	ane N	lumber?		
•	A)	Using Pyrolysis	B)	Alkylation	C)	To mix a fixed amount of TEL or TML	D)	Adding Gasoline
50.	Whi	ch is not an advantage o	f Lith	ium Ion Battery?				
	A)	Portability	B)	Voltage energy density	C)	Light weight	D)	Low internal resistance
		,		Page 5 of	13			

MATHEMATICS

51.	Find the vector equation of the line that passes through the points $A(3, 4, 1)$, and $B(2, -3, 5)$ crosses xy plane.						
	A) $r = \frac{7}{3}i + \frac{17}{3}j$	B) $r = \frac{2}{5}$	$\frac{3}{5}i + \frac{13}{5}j$ ($C) \qquad r = \frac{13}{5}i + \frac{13}{5$	$-\frac{23}{5}j$ D)	$r = \frac{17}{3}i + \frac{7}{3}j$	
52.	If $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$, $B = \begin{bmatrix} 4 & 7 \\ 3 & 5 \end{bmatrix}$ a A) 1	and $AB^{-1} = \begin{bmatrix} 1\\ 2\\ B \end{bmatrix}$	$\begin{bmatrix} a \\ 5 \end{bmatrix}$, then $a = ?$ -1	C) Cannot b	e found D)	None of these	
53.	If $A = \begin{bmatrix} 1 & 2 \\ a & b \end{bmatrix}$ and $A^2 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$, then the	values of a and b	are:			
	A) 2 and 1	B) -2 a	nd –1 C	C) $-\frac{1}{2}$ and $-\frac{1}{2}$	1 D)	$\frac{1}{2}$ and 1	
54.	A ray of light coming from point (5, 3). Find the coordi	n the point (1 inates of the p	(1,2) is reflected at point A.	t a point A on	the x -axis and t	hen passes through the	
	A) (13,0)	B) $\left(\frac{13}{5}, 0\right)$) C	$(\frac{11}{5},0)$	D)	$\left(\frac{9}{5},0\right)$	
55.	Find the equation of the line $3y + 1 = 0$ that has the equation $y = 0$ for $y = 0$.	ne passing that intercepts of	arough the point of the axes.	of intersection	of the lines $4x$	+7y - 3 = 0 and $2x - 3 = 0$	
	A) $13x + 13y = 6$	B) 13 <i>x</i> +	13y = 1 C	6x + 6y =	13 D)	6x + 6y = 1	
56.	A circle passes through the the circle is:	origin and th	ne point (4, 2); and	d its centre is c	on the line $x + y$	v = 1. The equation of	
	A) 2. 2						
	A) $x^2 + y^2 - y$	-6x + 2y = 0	В)	$x^{2} + y^{2} - r$	-8y = 0	
	A) $x^2 + y^2 - C$ $x^2 + y^2 - y^2$	-6x + 2y = 0 $-8x + 6y = 0$	B D)	$x^2 + y^2 - x$ $x^2 + y^2 - 2x$	-8y = 0 $-6y = 0$	
57.	A) $x^2 + y^2 - C$ C) $x^2 + y^2 - F$ Find the equation(s) of the t	-6x + 2y = 0 -8x + 6y = 0 angent(s) from	B D m the origin to the)))); circle $x^2 + y^2$	$x^{2} + y^{2} - x$ $x^{2} + y^{2} - 2x$ $= 5x - 5y + 10$	-8y = 0 $-6y = 0$	
57.	A) $x^{2} + y^{2} - C$ C) $x^{2} + y^{2} - x^{2} + y^{2} - y^{2} - y^{2}$ Find the equation(s) of the t A) $3x - y = 0$	-6x + 2y = 0 -8x + 6y = 0 angent(s) from B) $x - 3y$	B D m the origin to the $= 0 \qquad C$) circle $x^2 + y^2$ None of th	$x^{2} + y^{2} - x$ $x^{2} + y^{2} - 2x$ $-5x - 5y + 10$ ese D)	-8y = 0 -6y = 0 = 0. Both (A) and (B)	
57. 58.	A) $x^2 + y^2 - C$ Find the equation(s) of the t A) $3x - y = 0$ There are 6 boys who enter two boys A and B sit on the	-6x + 2y = 0 -8x + 6y = 0 angent(s) from B) $x - 3y$ a boat with 8 port side and	B D m the origin to the = 0 C seats of which 4 s another boy W sit) circle $x^2 + y^2$ None of th seats on each s s on the starbo	$x^{2} + y^{2} - x$ $x^{2} + y^{2} - 2x$ $-5x - 5y + 10$ ese D) de. In how man ard side?	-8y = 0 -6y = 0 = 0. Both (A) and (B) y ways can they sit, if	
57. 58.	A) $x^2 + y^2 - C$ Find the equation(s) of the t A) $3x - y = 0$ There are 6 boys who enter two boys A and B sit on the A) 56	-6x + 2y = 0 -8x + 6y = 0 angent(s) from B) $x - 3y$ a boat with 8 port side and B) 240	B D m the origin to the = 0 C seats of which 4 s another boy W sit C	() () () () () () () () () () () () () ($x^{2} + y^{2} - x$ $x^{2} + y^{2} - 2x$ $-5x - 5y + 10$ ese D) ide. In how man ard side? D)	-8y = 0 -6y = 0 = 0. Both (A) and (B) y ways can they sit, if 2200	
57. 58. 59.	A) $x^2 + y^2 - C$ Find the equation(s) of the t A) $3x - y = 0$ There are 6 boys who enter two boys A and B sit on the A) 56 How many triangles can be t A) 175	-6x + 2y = 0 -8x + 6y = 0 angent(s) from B) $x - 3y$ a boat with 8 port side and B) 240 formed by 12 B) 31	B D m the origin to the = 0 C seats of which 4 s another boy W sit C) points, 7 of which C)	 circle x² + y² None of the seats on each seats on the starbox 2880 lie on one line 105 	$x^{2} + y^{2} - x$ $x^{2} + y^{2} - 2x$ $-5x - 5y + 10$ ese D) ide. In how man ard side? D) e and other 5 on D)	-8y = 0 -6y = 0 = 0. Both (A) and (B) y ways can they sit, if 2200 another parallel line? 70	
57.58.59.60.	A) $x^{2} + y^{2} - C$ Find the equation(s) of the t A) $3x - y = 0$ There are 6 boys who enter two boys A and B sit on the A) 56 How many triangles can be t A) 175 $\tan \frac{1}{2} \left(\tan^{-1} x + \tan^{-1} \frac{1}{x} \right) = ?$	-6x + 2y = 0 -8x + 6y = 0 angent(s) from B) $x - 3y$ a boat with 8 port side and B) 240 formed by 12 B) 31	B D m the origin to the = 0 C seats of which 4 s another boy W sit C) points, 7 of which C)	() () () () () () () () () () () () () ($x^{2} + y^{2} - x$ $x^{2} + y^{2} - 2x$ $-5x - 5y + 10$ ese D) ide. In how man ard side? D) e and other 5 on D)	-8y = 0 -6y = 0 = 0. Both (A) and (B) any ways can they sit, if 2200 another parallel line? 70	
57.58.59.60.	A) $x^{2} + y^{2} - C$ Find the equation(s) of the tr A) $3x - y = 0$ There are 6 boys who enter two boys A and B sit on the A) 56 How many triangles can be tr A) 175 $\tan \frac{1}{2} \left(\tan^{-1} x + \tan^{-1} \frac{1}{x} \right) = ?$ A) $\frac{x - 1}{2x}$	$-6x + 2y = 0$ $-8x + 6y = 0$ angent(s) from B) $x - 3y$ a boat with 8 port side and B) 240 formed by 12 B) 31 B) $\tan \frac{x - 2x}{2x}$	B D m the origin to the = 0 C seats of which 4 s another boy W sit C) points, 7 of which C) 1 C)	(i) (i) (i) (i) (i) (i) (i) (i) (i) (i)	$x^{2} + y^{2} - x$ $x^{2} + y^{2} - 2x$ $-5x - 5y + 10$ ese D) ide. In how man ard side? D) e and other 5 on D)	-8y = 0 -6y = 0 = 0. Both (A) and (B) ways can they sit, if 2200 another parallel line? 70	
57.58.59.60.61.	A) $x^{2} + y^{2} - C$ Find the equation(s) of the t A) $3x - y = 0$ There are 6 boys who enter two boys A and B sit on the A) 56 How many triangles can be t A) 175 $\tan \frac{1}{2} \left(\tan^{-1} x + \tan^{-1} \frac{1}{x} \right) = ?$ A) $\frac{x - 1}{2x}$ If $\tan^{-1} \frac{2x}{1 - x^{2}} = \sin^{-1} \frac{2a}{1 + a^{2}}$	$-6x + 2y = 0$ $-8x + 6y = 0$ angent(s) from B) $x - 3y$ a boat with 8 port side and B) 240 formed by 12 B) 31 B) $\tan \frac{x - 2x}{2x}$ $-\cos^{-1} \frac{1 - b^2}{1 + b^2}$	B D m the origin to the = 0 C seats of which 4 s another boy W sit C) points, 7 of which C) 1 C) then $x = ?$	(i) (i) (i) (i) (i) (i) (i) (i) (i) (i)	$x^{2} + y^{2} - x$ $x^{2} + y^{2} - 2x$ $-5x - 5y + 10$ ese D) ide. In how man ard side? D) e and other 5 on D) D)	-8y = 0 -6y = 0 = 0. Both (A) and (B) any ways can they sit, if 2200 another parallel line? 70 $\sqrt{2}$	
57.58.59.60.61.	A) $x^{2} + y^{2} - C$ Find the equation(s) of the tr A) $3x - y = 0$ There are 6 boys who enter two boys A and B sit on the A) 56 How many triangles can be tr A) 175 $\tan \frac{1}{2} \left(\tan^{-1} x + \tan^{-1} \frac{1}{x} \right) = ?$ A) $\frac{x - 1}{2x}$ If $\tan^{-1} \frac{2x}{1 - x^{2}} = \sin^{-1} \frac{2a}{1 + a^{2}} - A$ A) $\frac{a - b}{1 + ab}$	$-6x + 2y = 0$ $-8x + 6y = 0$ angent(s) from B) $x - 3y$ a boat with 8 port side and B) 240 formed by 12 B) 31 B) $\tan \frac{x - 2x}{2x}$ $-\cos^{-1} \frac{1 - b^2}{1 + b^2}$ B) $\frac{a + b}{1 - ab}$	B D m the origin to the = 0 C; seats of which 4 s another boy W sit C; points, 7 of which C; $\frac{1}{2}$ C; then $x = ?$	$\frac{2a}{1+ab}$	$x^{2} + y^{2} - x$ $x^{2} + y^{2} - 2x$ $-5x - 5y + 10$ ese D) ide. In how man ard side? D) e and other 5 on D) D)	-8y = 0 -6y = 0 = 0. Both (A) and (B) any ways can they sit, if 2200 another parallel line? 70 $\sqrt{2}$ $\frac{2a}{1-ab}$	

Page 6 of 13

62.	$\cot^{-1}(\tan 2x) + \cot^{-1}(-$	$\tan 3x) = $?.				
	A) $\frac{2}{3}x$	B)	x	C)	$\frac{3}{2}x$	D)	2 <i>x</i>
63.	A company produces 2 plant 1 and 3 hours in p one production. Total a each item of product 1 i the company is:	types of pr blant 3 for vailable ho is 3 thousa	oduct. It uses 3 pl. producing 1 item. ours in plants 1, 2 nd, and for produc	ants for th The 2^{nd} p and 3 in at 2 is 5 th	e production. The product requires 2 a week are 4, 12, ousand. The possil	1 st produ hours ead and 18, 1 ole maxin	ct requires one hour in ch in plant 2 and 3 for respectively. Profit for num weekly profit for
	A) 18 thousand	B)	33 thousand	C)	36 thousand	D)	39 thousand
64.	Evaluate $\lim_{x\to 0} \frac{e^{x}-1}{e^{2x}-1}$.						
	A) $\frac{1}{4}$	B)	0	C)	$\frac{1}{2}$	D)	1
65.	$\frac{dy}{dy}\ln(\sec x + \tan x) = ?$						
	A) $\sec x$	B)	tan <i>x</i>	C)	cotx	D)	cos x
66.	$\frac{d}{dx}\tan^{-1}\sqrt{\frac{1-\cos x}{1-\sin x}} = ?$						
	A) $\frac{1}{2}$	B)	<u>1</u> 3	C)	$\sin \frac{x}{2}$	D)	$\cos\frac{x}{2}$
67.	The total waste per mile	in an elec	tric conductor is	~ K ²			
			W =	$=i^2R+\frac{R}{R}$,		
	where i is the current an	nd R is the	resistance. If the c	urrent is k	ept constant, then	find the r	naximum value of W .
	A) 2 <i>iK</i>	B)	iK	C)	$\frac{K}{i}$	D)	$\frac{2\pi}{i}$
68.	A cylinder is expanding hour. Find the rate the v	g in such a olume, V =	way that its height $= \pi r^2 h$, is increased	$\begin{array}{c} \text{ nt } h \text{ and } r \\ \text{ ing per ho} \end{array}$	adius r are both in ur .	creasing	at the rate of 1% per
	A) 1%	B)	2%	C)	3%	D)	4%
69.	$\int \frac{x^2}{\sqrt{1-x^2}} dx = ?$						
	A) $\frac{1}{2}x\sqrt{1-x^2} + C$			B)	$\frac{1}{2}\cos^{-1}x + \frac{1}{2}x\sqrt{1}$	$\overline{-x^2} + C$	
	C) $\frac{1}{2}x^2\sqrt{1-x^2}+C$			D)	$\frac{1}{2}\sin^{-1}x + \frac{1}{2}x\sqrt{1}$	$-x^{2} + C$	
70.	$\int_{0}^{\frac{\pi}{2}} \cos^3 x \sin^2 x dx =?$						
	A) $\frac{2}{15}$	B) -	2 13	C)	$\frac{\pi}{4}$	D)	$\frac{\pi}{2}$
71.	The area bounded by the 7	e curves y^2	= x and y = x - 2 9	2 is:	11	D)	5
	2	D)	2	0)	2	D)	2

Page 7 of 13

- 72. Find the condition that one root of the quadratic equation $px^2 qx + p = 0$ is 1 more than the other. A) $p^2 - 4q^2 = 0$ B) $q^2 - 5p^2 = 0$ C) $q^2 - 4p^2 = 0$ D) $p^2 - 5q^2 = 0$
- A) 1 B) -1 C) $\frac{1}{2}$ D) $-\frac{1}{2}$ 75. The point in a lunar orbit nearest the surface of the moon is called *perilune* and the point farthest from the surface is called *meduce*. The Angles 11 encourses placed in an elliptical lunar white it the surface of the moon is called *perilune* and the point farthest from the surface is called *meduce*.
- surface is called *apolune*. The *Apollo 11* spacecraft was placed in an elliptical lunar orbit with the perilune altitude 110 km and apolune altitude 314 km (above the moon). Find the equation of the ellipse if the radius of the moon is 1728 km adm the centre of the moon is at one focus.
 - A) $\frac{x^2}{37,63,600} + \frac{y^2}{41,69,764} = 1$ B) $\frac{x^2}{37,63,600} + \frac{y^2}{37,53,196} = 1$ C) $\frac{x^2}{33,78,244} + \frac{y^2}{37,53,196} = 1$ D) $\frac{x^2}{33,78,2441} + \frac{y^2}{41,69,7644} = 1$
- 76. Long-range navigation (LORAN) is a radio navigation system developed during World War II. The system enables a pilot to guide aircraft by maintaining a constant difference between the aircraft's distances from two fixed points: the master station and the slave station. Write an equation for the hyperbola depicted in the following figure.

77. Suppose you decide to drop a melon from rest from the first observation platform of the Eiffel Tower which is 58.3 *m* above the head of your friend who is standing just below you. Your friend shoots an arrow straight up at the same time with an initial velocity of $25.1 ms^{-1}$. What height above your friend's head does the collision occur?

A) 31.92 m B) 26.27 m C) 46.93 m D) 22.32 m

78. A resultant force F equal to 350 lb is necessary to hold the balloon in place. Assume that $\theta_1 = 30^0$ and $\theta_2 = 40^0$. The force is applied along the lines AB and AC as shown in the following figure. The magnitude of forces along the lines AB and AC are?

A) 186 lb and 239 lb B) 76 lb and 239 lb C) 268 lb and 322 lb D) 285 lb and 322 lb

79. The boat shown in the following figure is to be pulled onto the shore using two ropes. If the resultant force is to be $F_1 = 80$ lb directed along the line *aa*, determine the magnitudes of the force *P* so that the magnitude of *P* is minimum. *T* acts at an angle $\theta_1 = 30^0$ from the line *aa*. The force *P* will be minimum for a certain angle between *P* and *T*.

80. A 2.4 m long 60 kg uniform tabletop is supported by a pivot 80 cm from the left end and by a scale at the right end as shown in the following figure. How far from the left end should a 40 kg child sit if the scale is to read zero?

81. The ship shown in the following figure is moving at a constant velocity by a tugboat applying a force $F_1 = 50$ KN. Determine the force in each of *BC* and *BD* assuming $\theta_1 = 20^\circ$ and $\theta_2 = 30^\circ$.

A) 25.25 and 12.54 KNC) 62.32 and 82.64 KN

A) 7.40 m

B) 22.32 and 32.64 KND) 102.32 and 32.64 KN

82. In a suspension bridge the shape of the suspension cables is parabolic. The bridge shown in the following figure has tower that are 600 m apart, and the lowest point of the suspension cables is 150 m below the top of the tower. Find the equation of the parabolic part of the cables, placing the origin of the coordinate system at the vertex (that is, the lowest point of the cables).

83. Measurements of a shot recorded on a videotape during a basketball game are shown in the following figure. The ball passed through the hoop even though it barely cleared the hands of the player *B* who attempted to block it. Neglecting the size of the ball, find the height of the ball when it passes over player *B*.

84. Car A starts from rest at t = 0 and travels along a straight road with a constant acceleration of $6 m s^{-2}$ until it reaches a speed of $80 m s^{-1}$. Afterwards it maintains this speed. In contrast, at t = 0, car B located 6000 m down the road is traveling towards A at a constant speed of $60 m s^{-1}$. Find the distance traveled by car A when they pass each other.

0011	cours,	milat is the producing	that he of bhe khows th	ic and	wei:		
A)	8 9	B)	$\frac{1}{4}$	C)	$\frac{3}{4}$	D)	7 9

85.

ENGLISH

Ques Choo	tions se th	86-90: le appropriate word / wo	rds fo	or the blank space to	com	plete the sentence.		
86.	Abdur Rahim and Liaqat went to the bank and made a deposit.							
	A)	he	B)	they	C)	it	D) their	
87.	In 1	1980, the Netherlands agre	eed to	limit fishing in certain	n Atla	antic Ocean beds, but ir	1 1981,	
	A)	they terminated the agre	emen	t.	B)	they decided to termin	nate the agreement.	
	C)	it terminated the agreem	ient.		D)	it was terminated.		
88.	Wh	ile brokers, as a rule, are 1	not pe	rmitted to know execu	itive	access codes, in many i	nstances	
	A)	they are widely known			B)	they are widely know	n to be	
	C)	they are widely known b	oy ma	ny	D)	the codes are widely h	known	
89.	The	e number of workers		each y	vear.			
	A)	have increased steadily			B)	steadily have increase	d	
	C)	have been increasing ste	adily		D)	has increased steadily		

90.	The commercial a a violation of its a	irliner flew too close to the milita ir space.	ry base, an act that the ar	my saw	
	A) as	B) as if it was	C) to be	D) th	nat it was

Questions 91-93:

The questions in this group are based on the content of a passage. After reading the passage, choose the best answer to each question on the basis of what is stated or implied in the passage.

91. "In an effort to reduce the amount of fat and the number of calories that they consume, many citizens are making significant changes in their diets. For them staying in shape and looking fit now take precedence over eating foods that are filling and that taste good. It is likely that if they maintain these new priorities with consistent regard for other health issues, the length and quality of their lives will increase significantly."

Which one of the following is an assumption upon which the argument is based?

- A) Eating foods that are filling and tastes good is inconsistent with staying in shape and looking fit.
- B) Controlling the quality of one's life requires more than mere dietary adjustments.
- C) A combination of diet and exercise is necessary if one wishes to stay in shape and look fit.
- D) Many citizens of the United States have only recently discovered the importance of diet to living a longer, healthier life.
- 92. "Singing in the Rain Umbrella Corporation plans to institute a marketing campaign in which it sells umbrellas at the exits of subway stations during rainy weather. The umbrellas will be sold at a price that is slightly higher than normal. The company thinks the sales of these higher priced umbrellas will be greater than normal sales of umbrellas, because the purchasers of these umbrellas will be forced to buy them if they do not want to get wet."

The author assumes which of the following about the purchasers of the umbrellas in predicting the sales of the umbrellas?

- A) Customers who do not feel immediate pressure to purchase will not do so.
- B) Normally priced umbrellas are not profitable for singing in the Rain Umbrellas Corporation.
- C) Very few people buy Singing in the Rain's normally priced umbrellas.
- D) Singing in the Rain Umbrellas Corporation will have to stop selling normally priced umbrellas when it starts selling higher priced umbrellas.
- 93. "A leading cement manufacturer has been having problems processing manufacturing and delivery records since it expanded its operations. To solve this problem it plans to install a new platform on its central computing system which will run its tracking program five times faster than the current system does."

Which one of the following castes the most serious doubt on the manufacturer's plan?

- A) Not all computer platforms can make the company's tracking programs run more quickly.
- B) The cost of the new computer platform will require the cement manufacture to raise prices for its products.
- C) The cement company's computer system does not have the capability to run the new platform and cannot be updated.
- D) The company has been increasing the sales of cement by 1.5 percent a month for the past 18 months.

Questions 94 – 97:

Identify the correct synonym by looking for word roots, prefixes, or suffixes. Choose the word that means the same or about the same as the italicized word.

94. An incoherent answer

	A) not understandable	B)	not likely	C)	undeniable	D)	challenging
95.	Covered with <i>debris</i> A) good excuses	B)	transparent material	C)	scattered rubble	D)	protective material
96.	<i>Inadvertently</i> left A) mistakenly	B)	purposely	C)	cautiously	D)	carefully
97.	<i>Compatible</i> workers A) gifted	B)	competitive	C)	harmonious	D)	experienced
Quest Choo 98.	tions: 98 -100: se the word that means the a <i>Capable</i> employee	oppos	<i>tite</i> of the italicized wo	rd.			
	A) unskilled	B)	absurd	C)	apt	D)	able
99.	Zealous pursuit A) envious	B)	eager	C)	idle	D)	comical
100.	<i>Exorbitant</i> prices A) expensive	B)	unexpected	C)	reasonable	D)	outrageous